Variational Study of Nonlinear Splinecurves

نویسندگان

  • E. H. Lee
  • G. E. Forsythe
چکیده

This is of nonlinear an exposition of the variational and differential properties spline curves, based on the Euler-Bernoulli theory for the bending of thin beams or elastica. For both open and closed splines through prescribed nodal points in the euclidean plane, various types --. of nodal constraints are considered, and the corresponding algebraic and differential equations relating curvature, angle, arc length, and tangential force are derived in a simple manner. The results for closed splines are apparently new, and they cannot be derived by the consideration of a constrained conservative system. There is a survey of the scanty recent literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

Nonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method

In this paper, nonlinear dynamic behaviour of the carbon nanotube conveying fluid in slip boundary conditions is studied using the variation iteration method. The developed solutions are used to investigate the effects of various parameters on the nonlinear vibration of the nanotube. The results indicate that an increase in the slip parameter leads to a decrease in the frequency of vibration an...

متن کامل

Free and constrained equilibrium states in a variational problem on a surface

We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998